90 research outputs found

    Disulfide cross-links in the interaction of a cataract-linked αA-crystallin mutant with ÎČB1-crystallin

    Get PDF
    AbstractA number of αA-crystallin mutants are associated with hereditary cataract including cysteine substitution at arginine 49. We report the formation of affinity-driven disulfide bonds in the interaction of αA-R49C with ÎČB1-crystallin. To mimic cysteine thiolation in the lens, ÎČB1-crystallin was modified by a bimane probe through a disulfide linkage. Our data suggest a mechanism whereby a transient disulfide bond occurs between αA- and ÎČB1-crystallin followed by a disulfide exchange with cysteine 49 of a neighboring αA-crystallin subunit. This is the first investigation of disulfide bonds in the confine of the chaperone/substrate complex where reaction rates are favored by orders of magnitude. Covalent protein cross-links are a hallmark of age-related cataract and may be a factor in its inherited form

    Structure and Dynamics of AMPA Receptor GluA2 in Resting, Pre-Open, and Desensitized States

    Get PDF
    SummaryIonotropic glutamate receptors (iGluRs) mediate the majority of fast excitatory signaling in the nervous system. Despite the profound importance of iGluRs to neurotransmission, little is known about the structures and dynamics of intact receptors in distinct functional states. Here, we elucidate the structures of the intact GluA2 AMPA receptor in an apo resting/closed state, in an activated/pre-open state bound with partial agonists and a positive allosteric modulator, and in a desensitized/closed state in complex with fluorowilliardiine. To probe the conformational properties of these states, we carried out double electron-electron resonance experiments on cysteine mutants and cryoelectron microscopy studies. We show how agonist binding modulates the conformation of the ligand-binding domain “layer” of the intact receptors and how, upon desensitization, the receptor undergoes large conformational rearrangements of the amino-terminal and ligand-binding domains. We define mechanistic principles by which to understand antagonism, activation, and desensitization in AMPA iGluRs

    Room-Temperature Distance Measurements of Immobilized Spin-Labeled Protein by DEER/PELDOR

    Get PDF
    Nitroxide spin labels are used for double electron-electron resonance (DEER) measurements of distances between sites in biomolecules. Rotation of gem-dimethyls in commonly used nitroxides causes spin echo dephasing times (Tm) to be too short to perform DEER measurements at temperatures between ∌80 and 295 K, even in immobilized samples. A spirocyclohexyl spin label has been prepared that has longer Tm between 80 and 295 K in immobilized samples than conventional labels. Two of the spirocyclohexyl labels were attached to sites on T4 lysozyme introduced by site-directed spin labeling. Interspin distances up to ∌4 nm were measured by DEER at temperatures up to 160 K in water/glycerol glasses. In a glassy trehalose matrix the Tm for the doubly labeled T4 lysozyme was long enough to measure an interspin distance of 3.2 nm at 295 K, which could not be measured for the same protein labeled with the conventional 1-oxyl-2,2,5,5-tetramethyl-3-pyrroline-3- (methyl)methanethio-sulfonate label

    Room-Temperature Distance Measurements of Immobilized Spin-Labeled Protein by DEER/PELDOR

    Get PDF
    Nitroxide spin labels are used for double electron-electron resonance (DEER) measurements of distances between sites in biomolecules. Rotation of gem-dimethyls in commonly used nitroxides causes spin echo dephasing times (Tm) to be too short to perform DEER measurements at temperatures between ∌80 and 295 K, even in immobilized samples. A spirocyclohexyl spin label has been prepared that has longer Tm between 80 and 295 K in immobilized samples than conventional labels. Two of the spirocyclohexyl labels were attached to sites on T4 lysozyme introduced by site-directed spin labeling. Interspin distances up to ∌4 nm were measured by DEER at temperatures up to 160 K in water/glycerol glasses. In a glassy trehalose matrix the Tm for the doubly labeled T4 lysozyme was long enough to measure an interspin distance of 3.2 nm at 295 K, which could not be measured for the same protein labeled with the conventional 1-oxyl-2,2,5,5-tetramethyl-3-pyrroline-3- (methyl)methanethio-sulfonate label

    Rapid-Scan EPR of Immobilized Nitroxides

    Get PDF
    X-band electron paramagnetic resonance spectra of immobilized nitroxides were obtained by rapid scan at 293 K. Scan widths were 155 G with 13.4 kHz scan frequency for 14N-perdeuterated tempone and for T4 lysozyme doubly spin labeled with an iodoacetamide spirocyclohexyl nitroxide and 100 G with 20.9 kHz scan frequency for 15N-perdeuterated tempone. These wide scans were made possible by modifications to our rapid-scan driver, scan coils made of Litz wire, and the placement of highly conducting aluminum plates on the poles of a Bruker 10 magnet to reduce resistive losses in the magnet pole faces. For the same data acquisition time, the signal-to-noise for the rapid-scan absorption spectra was about an order of magnitude higher than for continuous wave first-derivative spectra recorded with modulation amplitudes that do not broaden the lineshapes

    Rapid-Scan EPR of Immobilized Nitroxides

    Get PDF
    X-band electron paramagnetic resonance spectra of immobilized nitroxides were obtained by rapid scan at 293 K. Scan widths were 155 G with 13.4 kHz scan frequency for 14N-perdeuterated tempone and for T4 lysozyme doubly spin labeled with an iodoacetamide spirocyclohexyl nitroxide and 100 G with 20.9 kHz scan frequency for 15N-perdeuterated tempone. These wide scans were made possible by modifications to our rapid-scan driver, scan coils made of Litz wire, and the placement of highly conducting aluminum plates on the poles of a Bruker 10 magnet to reduce resistive losses in the magnet pole faces. For the same data acquisition time, the signal-to-noise for the rapid-scan absorption spectra was about an order of magnitude higher than for continuous wave first-derivative spectra recorded with modulation amplitudes that do not broaden the lineshapes

    Probing the solution structure of the E. coli multidrug transporter MdfA using DEER distance measurements with nitroxide and Gd(III) spin labels

    Get PDF
    Methodological and technological advances in EPR spectroscopy have enabled novel insight into the structural and dynamic aspects of integral membrane proteins. In addition to an extensive toolkit of EPR methods, multiple spin labels have been developed and utilized, among them Gd(III)-chelates which offer high sensitivity at high magnetic fields. Here, we applied a dual labeling approach, employing nitroxide and Gd(III) spin labels, in conjunction with Q-band and W-band double electron-electron resonance (DEER) measurements to characterize the solution structure of the detergent-solubilized multidrug transporter MdfA from E. coli. Our results identify highly flexible regions of MdfA, which may play an important role in its functional dynamics. Comparison of distance distribution of spin label pairs on the periplasm with those calculated using inward- and outward-facing crystal structures of MdfA, show that in detergent micelles, the protein adopts a predominantly outward-facing conformation, although more closed than the crystal structure. The cytoplasmic pairs suggest a small preference to the outward-facing crystal structure, with a somewhat more open conformation than the crystal structure. Parallel DEER measurements with the two types of labels led to similar distance distributions, demonstrating the feasibility of using W-band spectroscopy with a Gd(III) label for investigation of the structural dynamics of membrane proteins.This work was supported by the German-Israeli Foundation for Scientific Research and Development to E.B. (GIF, Grant Number I-1202-248.9/2012), the Clore Center of Biological Physics at the Weizmann Institute of Science to D.G. and E.B., by a grant from the United States - Israel Binational Science Foundation (BSF), Jerusalem, Israel to H.S.M. and E.B., and by a grant from the Minerva Foundation to D.G. E.H.Y is the recipient of a Professor Rahamimoff Travel Grant from the United States - Israel Binational Science Foundation. T.B. acknowledges financial support from the Minerva Foundation. The authors would like to thank Dr. Akiva Feintuch for his support with Gd(III) AWG-DEER measurements

    Elucidating the Ticking of an In Vitro Circadian Clockwork

    Get PDF
    A biochemical oscillator can be reconstituted in vitro with three purified proteins, that displays the salient properties of circadian (daily) rhythms, including self-sustained 24-h periodicity that is temperature compensated. We analyze the biochemical basis of this oscillator by quantifying the time-dependent interactions of the three proteins (KaiA, KaiB, and KaiC) by electron microscopy and native gel electrophoresis to elucidate the timing of the formation of complexes among the Kai proteins. The data are used to derive a dynamic model for the in vitro oscillator that accurately reproduces the rhythms of KaiABC complexes and of KaiC phosphorylation, and is consistent with biophysical observations of individual Kai protein interactions. We use fluorescence resonance energy transfer (FRET) to confirm that monomer exchange among KaiC hexamers occurs. The model demonstrates that the function of this monomer exchange may be to maintain synchrony among the KaiC hexamers in the reaction, thereby sustaining a high-amplitude oscillation. Finally, we apply the first perturbation analyses of an in vitro oscillator by using temperature pulses to reset the phase of the KaiABC oscillator, thereby testing the resetting characteristics of this unique circadian oscillator. This study analyzes a circadian clockwork to an unprecedented level of molecular detail

    Lipids modulate the conformational dynamics of a secondary multidrug transporter

    Get PDF
    Direct interactions with lipids have emerged as key determinants of the folding, structure and function of membrane proteins, but an understanding of how lipids modulate protein dynamics is still lacking. Here, we systematically explored the effects of lipids on the conformational dynamics of the proton-powered multidrug transporter LmrP from Lactococcus lactis, using the pattern of distances between spin-label pairs previously shown to report on alternating access of the protein. We uncovered, at the molecular level, how the lipid headgroups shape the conformational-energy landscape of the transporter. The model emerging from our data suggests a direct interaction between lipid headgroups and a conserved motif of charged residues that control the conformational equilibrium through an interplay of electrostatic interactions within the protein. Together, our data lay the foundation for a comprehensive model of secondary multidrug transport in lipid bilayers
    • 

    corecore